
Draft version May 1, 2023
Typeset using LATEX twocolumn style in AASTeX631

Identifying Birth Environments of Isolated Stars With Clustering of Stellar Chemical Abundances

Ian Chow

Advisor: Joshua Speagle

ABSTRACT

Dynamical processes in stellar clusters can disperse stars into the galactic background as isolated

stars. Although these isolated stars provide important information about the evolution of clusters and

galaxies, tracing them back to their birth clusters is challenging. One technique for doing so, known as

chemical tagging, is to compare their chemical abundances to that of a known cluster. While chemical

tagging often makes use of dimensionality reduction methods such as Uniform Manifold Approximation

and Projection (UMAP) to identify clusters, previous studies have not accounted for observational un-

certainty. We investigate how uncertainty impacts chemical tagging by analyzing its effect on UMAP’s

structure and ability to recover known star clusters. Using a control group of 72 stars from the globular

cluster M3 in a sample of 3212 stars from the APOGEE DR17 catalogue, we simulate observational un-

certainty using Monte Carlo sampling and compare the UMAP projections and control group recovery

fraction to a baseline result. We then investigate whether the Monte Carlo distributions of individual

points in UMAP space are Gaussian by using a Kolmogorov-Smirnov (K-S) test and comparing the

results to a test set of Gaussian data. We find that the global structure of UMAP is preserved under

Monte Carlo sampling, though control group recovery drops significantly. In addition, the distribution

of p-values for the K-S tests strongly suggests that UMAP does not propagate Gaussian errow to

the low-dimensional embedding. We therefore develop a new dimensionality reduction method based

on the variational autoencoder (VAE) neural network architecture, which works directly with Gaus-

sian distributions and thus explicitly propagates Gaussian error by construction. Using the APOGEE

DR17 data, we train our proposed model and evaluate its performance. We find that our model is

able to robustly reconstruct the original Gaussian distributions while preserving most information in

the original data, suggesting a prospective use for probabilistic cluster association in chemical tagging

studies of other data sets. In the future, we also hope to generalize our method to directly take as

input the spectra from which the abundances are derived.

1. INTRODUCTION

Most stars in the Milky Way generally form in stel-

lar clusters (i.e. globular clusters, open clusters, or

stellar associations). Star formation begins when over-

densities in giant molecular clouds (GMCs) collapse

into dense, gravitationally bound molecular cores which

eventually form stellar clusters. During gravitational

collapse, these nascent clusters can produce hundreds of

stars at a a time (Krumholtz et al. 2014), which dynam-

ical processes such as tidal shocks and two-body relax-

ation subsequently disperse into the disc of the Milky

Way (Krumholtz et al. 2019). Within the dense core of

these stellar clusters, three-body interactions between

a binary and a single star can cause one star to be

ejected from the system. In some cases, these interac-

tions can cause a star to be expelled beyond a cluster’s

tidal radius entirely, at which point it is no longer gravi-

tationally bound to the cluster and becomes an isolated

star. While identifying these isolated stars is crucial

in understanding the dynamics and evolution of clus-

ters, connecting them to their birth environments using

their position and kinematics alone is difficult due to

the manner in which three-body interactions disperse

stars. However, stars generally retain the relative ele-

mental abundances from their birth environments when

they formed. Assuming a uniform composition of a stel-

lar cluster’s parent GMC, we can therefore identify the

birth clusters of isolated stars by comparing their chem-

ical “fingerprint” to that of a known cluster. This tech-

nique is known as chemical tagging, and has been used to

find cluster associations of isolated stars (e.g. Navin et

al. (2016), Martell et al. (2016), Schiavon et al. (2017)).
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Statistical clustering algorithms such as density-based

spatial clustering of applications with noise (DBSCAN)

can be used to recover star clusters in high-dimensional

abundance data (Price-Jones & Bovy 2019). However,

clustering algorithms generally perform poorly on high-

dimensional data due to the curse of dimensionality, ne-

cessitating the use of dimensionality reduction meth-

ods as a preprocessing step. These methods project

high-dimensional data into a lower dimension while pre-

serving as much intrinsic information about the original

data as possible. Recent developments in machine learn-

ing have introduced new dimensionality reduction algo-

rithms for chemical tagging such as t-Stochastic Neigh-

bor Embedding (t-SNE) (van der Maaten & Hinton

2008) and Uniform Manifold Approximation and Pro-

jection (UMAP) (McInnes et al. 2018). While t-SNE

and UMAP are powerful algorithms that have been used

in previous chemical tagging studies (e.g. Grondin et

al. (2023), Chun et al. (2020), Anders et al. (2018)),

they do not take into account any uncertainty in the

data. As such, chemical tagging studies using these al-

gorithms have yet to incorporate observational uncer-

tainty into their analysis. We therefore aim to develop a

method for dimensionality reduction and clustering that

can propagate uncertainty in a probabilistic manner dur-

ing chemical tagging, with the end goal of improving the

robustness of cluster associations when identifying iso-

lated stars.

We structure our paper as follows: Section 2 intro-

duces the data used in our analysis. Section 3 reviews

applications of t-SNE and UMAP to chemical tagging

and provides a baseline UMAP projection for later com-

parison. In section 4.1, we investigate how uncertainty

in the data qualitatively impacts the overall structure

of UMAP projections as well as its ability to recover

known star clusters, using data from the globular cluster

M3 as a test case. We then demonstrate in section 4.2

that UMAP does not probabilistically propagate uncer-

tainty from high-dimensional to low-dimensional space

in general; specifically, we show that the Gaussian mea-

surement error in the original high-dimensional data is

not preserved in the lower-dimensional embedding. Mo-

tivated by these results, section 5 proposes a new di-

mensionality reduction method, based on the variational

autoencoder (VAE) neural network architecture, that is

constructed to explicitly propagate Gaussian error (un-

like UMAP). Using data from the APOGEE DR17 re-

lease, we demonstrate that our method is able to pre-

serve most of the information during dimensionality re-

duction, while reproducing Gaussian error in the low-

dimensional representation. We also compare the per-

formance of our model to that of a ”naive” VAE using

the default architecture. We discuss our results in sec-

tion 6. Finally, we summarize our conclusions in section

7, including prospects for applying this method in future

chemical tagging studies.

2. DATA

In our work, we use data from the DR17 data re-

lease (Abdurro’uf et al. 2022) of the Apache Point Ob-

servatory Galactic Evolution Experiment (APOGEE)

spectroscopic survey, which contains high-resolution

(R ∼ 22, 500), high signal-to-noise ratio (> 100), in-

frared (1.51–1.70µm) spectra for 370, 060 stars in the

Milky Way (Majewski et al. 2017). Our analysis consid-

ers stellar chemical abundances and radial velocities as

parameters for dimensionality reduction, as we expect

stars in a gravitationally bound cluster to have similar

kinematic profiles in addition to chemical abundances.

We use the chemical abundance data derived by Leung

& Bovy (2019) using their astroNN neural network in

Python. The data contains 19 astroNN chemical abun-

dances in total, as well as radial velocities from the Gaia

EDR3 data release (Gaia Collaboration 2021). The el-

ements present in the chemical abundance data can be

seen in Fig. 1, which is taken from Fig. 3 of Grondin

et al. (2023). After filtering stars with duplicate spec-

tra, low signal-to-noise ratio (< 50), lacking chemical

abundance data, or otherwise flagged as having poten-

tial issues, we obtain a filtered sample of 144, 767 stars

for our analysis.

In sections 3 and 4, we analyse the impact of uncer-

tainty on UMAP using the globular cluster M3. Follow-

ing the method in Section 2 of Grondin et al. (2023),

we first restrict our selection to those stars within a

10°× 10° field of view around the center of the globular

cluster M3, which consists of 3212 unique stars. We then

identify an initial control group of 72 M3 members by

selecting all stars located within 4 times the half-mass

radius of rhm = 6.34pc ≈ 0.036° (Baumgardt & Hilker

2018) from M3’s center in the plane of the sky, follow-

ing a similar procedure to that outlined by Grondin et

al. (2023). A preliminary comparison of the abundance

distributions for M3 and the field stars (the 10° × 10°
sample) with outlier stars (defined as the most extreme

5% of the data) removed is shown in Fig. 1. Note that

we use a more restrictive control group (4 × rhm com-

pared to 8 × rhm) than Grondin et al. (2023) to mini-

mize the chance of including background field stars in

our control group, since we do not further select control

group stars by chemical abundance. Nevertheless, the

chemical fingerprint is clear when qualitatively observ-

ing the location of the M3 abundance distributions in

parameter space compared to the background in Fig. 1,
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supporting our method of selecting a chemically unique

control group for subsequent analysis.

For sections 5 and 6, we use all 19 chemical abun-

dances (without the radial velocities this time) of the

full filtered set of 144, 767 stars to train and evaluate

the performance of our neural network. The data is di-

vided into a training set of 115, 000 stars and a test set

of 29, 767 stars for an approximately 75% training and

25% testing split.

3. T-SNE AND UMAP

Methods such as t-SNE and UMAP project high-

dimensional data into a lower dimension while preserv-

ing as much intrinsic information about the original data

as possible. Given a high-dimensional data set, both al-

gorithms first calculate the distance between any two

given points using a “similarity score” metric. For t-

SNE, the similarity score between a point and any other

point in the data is computed using the height of a Gaus-

sian distribution centered on that point, normalized so

all similarity scores for a given point sum to 1. In con-

trast, UMAP only computes similarity scores for the

n nearest neighbours of a point, and scales all similar-

ity scores for a point to sum to log2 (n). Both t-SNE

and UMAP then initialize a low-dimensional embedding

of the data and then compute similarity scores for any

given point in the low-dimensional embedding using a

t-distribution centered on that point. The algorithms

then iteratively move points around their respective em-

beddings so that the low-dimensional similarity scores

are as close to the high-dimensional scores as possible.

Note that while the values of the projected points in t-

SNE and UMAP do not have a corresponding physical

interpretation, the relative high-dimensional distances

between points are preserved through projection to low-

dimensional space, allowing us to perform clustering on

the low-dimensional embedding.

Although t-SNE and UMAP work in a very similar

manner, our analysis in this paper will primarily use

UMAP for several reasons. While t-SNE moves every

point during every iteration (and thus recomputes all

the similarity scores), UMAP moves only a small sub-

set of points (the n nearest neighbours of a given point)

at a time. In addition, t-SNE uses a random initializa-

tion of its low-dimensional graph, while UMAP performs

spectral embedding to initialize the graph into a good

starting state. This makes UMAP much faster and less

computationally expensive to run compared to t-SNE,

and usually results in a more stable projection when run

on the same data multiple times or when adding points

to the data. Moreover, UMAP is more flexible since it

allows projection of data into an arbitrary dimension,

while t-SNE is limited to a two-dimensional embedding.

3.1. Data Preprocessing

As a preprocessing step before performing any dimen-

sionality reduction, we normalize the data to account

for parameters with a large variance so that UMAP and

t-SNE will equally weight all chemical abundances and

radial velocities when computing a similarity score in

the dimensionality reduction process. For unnormalized

data, the distances between points in a low-dimensional

embedding would be dominated by parameters with

large variance, similar to principal components analy-

sis. As we assume all parameters are equally important

in the chemical tagging process, normalizing the data

ensures that the embedding is not dominated by a few

parameters. We therefore normalize the distribution of

each parameter in the data by subtracting the parame-

ter mean from every point and dividing by the variance

so that µ = 0 and σ = 1 across all chemical abundances

and radial velocities.

3.2. UMAP Analysis

We begin by fitting UMAP on the normalized data for

all 3212 stars in our sample, including both the control

group and field stars, as shown in Fig. 2. The UMAP al-

gorithm is implemented using the umap-learn (McInnes

et al. 2018) package in Python. The resulting projection

shows that the UMAP embedding recovers almost all the

M3 control group stars using the group’s unique chemi-

cal fingerprint. Fig. 2 also provides a baseline for us to

compare against in subsequent sections when analyzing

the effects of uncertainty on UMAP. We set a minimum

distance between embedded points of 0.1 and a local

neighbourhood size of n = 15, which was empirically

determined to balance preserving the overall structure

of the data with retaining detail in its local features.

3.3. t-SNE Analysis

For completeness, we also fit t-SNE on the same nor-

malized data used for UMAP, to confirm that our M3

control group can be consistently recovered by multiple

dimensionality reduction approaches. Fig. 3 shows the

t-SNE projection for all 3212 stars in our sample, imple-

mented using the scikit-learn (Pedregosa et al. 2011)

package in Python. Similar to the UMAP projection,

we see that the t-SNE embedding recovers almost all

the M3 control group stars, providing confidence that

the identified control group has a distinct chemical fin-

gerprint recoverable by dimensionality reduction. For

t-SNE, we provide a perplexity value of 30, with other

hyperparameters set to the default values used by the
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Figure 1. Distributions of relative elemental abundances for 19 elements, in units of log10 of the given ratio, shown as violin
plots for the M3 control group (top) and background stars (bottom), taken from Fig. 3 of Grondin et al. (2023). Outlier stars
for both the M3 group and the full sample are removed by selecting the central 95% of the data. The median abundances for
the M3 control group and background stars are labelled with crosses and circles, respectively. The median abundance errors
for background stars are indicated with error bars. Note that Grondin et al. (2023) use a larger control group of 133 stars
within 8 times the half-mass radius of M3’s center for this plot, while we use a smaller control group of 72 stars within 4 times
the half-mass radius in our analysis. Even with this larger group, the chemical fingerprint of the M3 cluster is apparent when
comparing the median abundances of the M3 group to the background stars. Moreover, the M3 distributions have a generally
lower variance than their corresponding background star distribution.

scikit-learn implementation. Similar to neighbour-

hood size in UMAP, perplexity balances attention be-

tween local and global aspects of the data, with our per-

plexity value again chosen empirically to preserve both
large-scale structure and small-scale detail.

4. EFFECTS OF UNCERTAINTY ON UMAP

4.1. Global Structure

To qualitatively determine the effects of measurement

uncertainty on the global structure of the UMAP embed-

ding, we first simulate uncertainty by performing Monte

Carlo sampling on the original data, and then compare

the resulting projections of the Monte Carlo samples to

the original result in Fig. 2. We produce a single Monte

Carlo sample by drawing each parameter of every point

from a corresponding Gaussian distribution with mean

equal to the observed value and variance equal to the

square of the measurement error. The parameter values

are then normalized using the means and variances from

the original data, as described in section 3.2. UMAP is

then performed on the Monte Carlo sample using the

same fit as the original data.

Fig. 4 shows the UMAP projections for this procedure

on 6 Monte Carlo realizations, while Fig. 5 shows an ag-

gregate plot of the projections on a larger set of 100 re-

alizations. Stars from the M3 control group are labelled

on both figures. We see that while Monte Carlo realiza-

tion generally preserves the global structure of UMAP, it

reduces the fraction of M3 points recovered from ∼ 97%

in the original data to ∼ 64% under Monte Carlo re-

alization. In addition, the unrecovered M3 points are

scattered across different areas of the resulting projec-

tion, suggesting that individual points may be highly

delocalized in UMAP space.

4.2. Local Structure

We can determine whether the distribution of a point

in UMAP space is in general Gaussian by comparing

it to a known distribution using a statistical test like

the one-sample Kolmogorov-Smirnov (K-S) test, which
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Figure 2. UMAP projection of 3212 APOGEE DR17 stars
in a 10° × 10° field of view around M3 using 19 chemical
abundances and radial velocities. A minimum distance be-
tween embedded points of 0.1 and a local neighbourhood
size of n = 15 is used. Stars from the M3 control group, as
identified in Section 2, are labelled in pink. Field stars are
coloured by their C/FE ratio, showing the variation along
one axis of the original high-dimensional abundance data in
the projection. UMAP successfully recovers almost all the
M3 control group stars as a cluster of points at the top of
the plot.

computes a test statistic as the maximum distance be-

tween a sample and a reference distribution at any x-

value. As UMAP maps high-dimensional vectors into 2

dimensions, each point in the original data has a corre-

sponding 2-D distribution in UMAP space under Monte

Carlo realization, as shown in the right panel of Fig. 5.

However, use of the K-S test (and other widely-used sta-

tistical tests for normality such as the Anderson-Darling

test) is limited to univariate data, as it is not possible to

uniquely order data across two or more axes to compute

a maximum distance between two multivariate distribu-

tion functions. Therefore, we instead exploit the fact

that a p-dimensional multivariate Gaussian-distributed

vector X ∼ N (µ,C) can be transformed into a univari-

ate χ2-distributed variable Z ∼ χ2 (p) according to:

Z = (X− µ)
T
C−1 (X− µ) (1)

where µ is the p × 1 sample mean and C is the p × p

sample covariance. We transform the 2-dimensional

UMAP distribution for a single point (as shown in the

right panel of Fig. 5) into a 1-dimensional distribu-

tion according to equation 1. The transformed vari-

able Z is then compared to a reference χ2 distribution

Figure 3. t-SNE projection of the same 3212 APOGEE
DR17 stars in a 10° × 10° field of view around M3 using
19 chemical abundances and radial velocities. A perplexity
value of 30 is used, with other hyperparameters set to de-
fault values. Stars from the M3 control group are labelled in
pink. Field stars are coloured by their C/FE ratio, showing
the variation along one axis of the original high-dimensional
abundance data in the projection. Similar to UMAP, t-SNE
is able to recover almost all the M3 control group stars in a
cluster of points near the top right of the plot.

with 2 degrees of freedom using a one-sample K-S test,

and the corresponding two-tailed p-value of the test is

recorded. The p-values of this procedure performed on

every point in the UMAP data from Fig. 5 are compared

to the p-values for a test set of 2-dimensional Gaussian

data in Fig. 6. Note that a uniform or slightly left-

skewed distribution of p-values suggests that the data

are mostly Gaussian-distributed in UMAP space; con-

versely, a right-skewed distribution (where most p-values

are small) suggests that the data are generally non-

Gaussian. As such, the results from Fig. 6 strongly

suggest that the data are overwhelmingly non-Gaussian

distributed in UMAP space, and thus the original high-

dimensional Gaussian distribution in chemical abun-

dance and radial velocity does not correspond to a Gaus-

sian distribution in the UMAP projection.

4.3. Results

Our plots of UMAP and t-SNE for the original data

in Figs. 2 and 3 show broad agreement in their global

structure as well as along a test axis (C/FE ratio) of

the data. Moreover, both methods are able to recover

almost all the control group points, providing confidence

that the chemical tagging process works on our sample
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Figure 4. UMAP projections of 6 Monte Carlo samples of the data, with points from the M3 control group labelled in pink.
The general structure of the projection, as well as the presence and shape of large-scale features, is largely consistent across the
samples; for example, a long horizontal branch extending from the right, a large lobe extending upwards from the main group
of stars, and the locations of several overdensities within the main group. Although UMAP still recovers most points from the
M3 cluster under Monte Carlo realization, fewer points are recovered compared to the original data in every case.

Figure 5. Aggregate of 100 Monte Carlo UMAP projections, showing the distributions of all M3 group points (left panel) and
that of a random non-M3 data point (right panel) in UMAP space. UMAP recovers ∼ 64% of the M3 points across all the
Monte Carlo realizations, compared to ∼ 97% for the original data. The M3 cluster is clearly visible in the aggregate plot in
the left panel, while the remaining points are dispersed across the projection in a generally non-uniform manner, with areas
near the edge of the projection showing a higher density of points. The distribution of a single non-M3 point in the right panel
appears to be similarly abnormal.
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Significance level (α) 0.001 0.01 0.05

Fraction of non-Gaussian points (Test data) 0.0012 0.0087 0.052

Fraction of non-Gaussian points (UMAP data) 0.52 0.68 0.82

Figure 6. Comparison of the p-value distribution obtained using the Kolmogorov-Smirnov (K-S) test for 100 Monte Carlo
realizations of the UMAP data with a synthetic test set of known 2-dimensional Gaussian-distributed data. The p-values of the
test data are uniformly distributed between 0 and 1, reflecting the fact that the data are actually sampled from a 2-dimensional
Gaussian. The p-values of the UMAP data are highly right-skewed, providing strong evidence against our hypothesis that
the distributions of the Monte Carlo sampled points in UMAP space are in general Gaussian. The fraction of non-Gaussian
distributed points (p ≤ α) at various significance levels α for both the test and UMAP data are also recorded, showing that
most of the UMAP points are not Gaussian distributed.

data. As noted in Section 2, our control group is se-

lected from the filtered APOGEE data solely using its

location in celestial coordinates (within 4× rhm of M3’s

coordinates) without further processing. It is therefore

possible that our control group inadvertently includes

background or foreground stars aligned with M3, which

could explain the two stars not recovered by UMAP or

t-SNE in Figs. 2 and 3.

When simulating uncertainty in the data using Monte

Carlo sampling, Figs. 4 and 5 show that UMAP main-

tains the structure of the data, though it consistently

recovers fewer points compared to the original Fig. 2

projection. Our results from Fig. 6 show that the distri-

bution of p-values for the UMAP data are strongly right-

skewed, demonstrating that a large majority of points

(∼ 82% of points at a significance level p ≤ 0.05) are

non-Gaussian distributed in UMAP space. As UMAP

and t-SNE are nonlinear methods, there is no a priori

reason to believe that they should propagate uncertainty

in a Gaussian manner; nevertheless, our results provide

strong empirical confirmation that the low-dimensional
UMAP embedding does not recover the original Gaus-

sian uncertainty. In addition, the fraction of M3 points

recovered is decreased from∼ 97% in the original data to

64% under the Monte Carlo sampling in Fig. 5, demon-

strating the challenges posed by uncertainty to chemical

tagging analyses. Indeed, some previous authors have

expressed doubt in the viability of using chemistry alone

to associate stars with their birth clusters. For example,

Ting et al. (2015) find that for a synthetic Milky Way

disk data set, even dense groups in chemical abundance

space are usually comprised of stars from several clus-

ters, concluding that identification of individual clusters

through chemical tagging is difficult. Casamiquela et al.

(2021) test DBSCAN on known clusters in the APOGEE

DR16 RC data (Ahumada et al. 2020) using the same

astroNN abundances obtained by Leung & Bovy (2019)

that we use in our analysis. Casamiquela et al. (2021)
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are even more pessimistic about the ability of statistical

clustering methods to perform chemical tagging, sug-

gesting that the majority of groups (> 70%) recovered

by DBSCAN contain stars from multiple clusters.

However, Figs. 4 and 5 show that the unrecovered

M3 points are not uniformly distributed throughout the

embedding, but preferentially clustered near the edges

of the projection. This suggests that while UMAP is

unable to associate these points with the M3 cluster,

it is at least able to recognize that their overall chem-

istry is distinct from the the background stars. Indeed,

Casamiquela et al. (2021) observed a similar pattern in

the clusters they recovered from the APOGEE DR16

data, noting that UMAP was able to consistently iden-

tify clusters located near the edge of the distribution.

This motivates us to develop a new dimensionality re-

duction method capable of propagating uncertainty (i.e.

that can estimate a low-dimensional distribution for

each input point based on high-dimensional measure-

ment error), which we outline in the following sections.

5. VARIATIONAL AUTOENCODERS

In section 4.3, we determined that the Gaussian error

in the chemical abundance data is generally not propa-

gated by UMAP. Here we develop a new dimensionality

reduction method that is based on a variational autoen-

coder (VAE), a type of artificial neural network architec-

ture. We demonstrate that our method is generally able

to propagate Gaussian error, unlike UMAP, and that

its performance on the APOGEE data compares favor-

ably to the ”naive” model that uses the default VAE

architecture.

An autoencoder consists of two neural networks work-

ing together: an encoder qϕ (z∥x) that maps a high-

dimensional input vector x ∈ X to a lower-dimensional

latent representation z ∈ Z, and a decoder pθ (x∥z) that
attempts to reconstruct the original input from the cor-

responding latent representation. The autoencoder is

then trained to minimize a loss function L (x,x′), which

quantifies the reconstruction loss of the autoencoder.

For the ”naive” VAE model, a popular function for re-

construction loss (which we use as well) is the mean

squared error between x′ and x:

MSE =
1

N

n∑
i=1

(xi − x′
i)
2

which is summed over all N observations.

A variational autoencoder alters this structure by

having the encoder map every input vector x to a

distribution N (z, σz) in latent space (rather than a

point), with the parameters z and σz learned by the

encoder. The decoder then samples the latent vector z

from the corresponding distribution when reconstruct-

ing the original input. The loss function is then modified

to include an additional structure penalty DKL (P ||Q),

which is the Kullback-Leibler (KL) divergence between

the latent distribution P = N (z, σz) and the unit Gaus-

sian Q = N (0, 1):

DKL (P ||Q) =
1

2

(
z2 + σ2

z − lnσ2
z − 1

)
(2)

This structure penalty helps the network estimate the

shape of an underlying distribution that produces the

original input data. The following subsection outlines

the modifications we make to the VAE architecture for

our model.

5.1. Method

The chemical abundance measurements and errors

x, σx are input to the VAE, and two encoders for the

mean and variance of the corresponding latent distri-

bution are trained separately. Note that in our im-

plementation of the model, we parameterize using log-

variance rather than variance so that the model does

not learn negative values for variance. The first en-

coder Eϕ1 : x → z maps the input measurement x to

a point z in latent space, representing the mean of its

corresponding latent distribution. The second encoder

Eϕ2 : (x, σx) → σz maps the input measurement as well

as the error σx to the variance of the latent distribution,

σz. By separating the mean and variance in this man-

ner, we ensure that the latent space vector σz can be di-

rectly interpreted as a lower-dimensional encoding of the

information contained in the original measurements (i.e.

errors in a given measurement are propagated through

to the latent space, but do not affect their position in

latent space). In standard VAE usage, the sampling

step is meant to estimate an unknown distribution that

underlies the original observation x. However, in our

procedure, we already know the distribution of the orig-

inal observation and are instead interested in propagat-

ing it into (and reconstructing it from) the latent space.

Thus, we eliminate the step of sampling from the la-

tent space distribution entirely, and instead directly in-

put the latent distributions (parameterized using z, σz

as N (z, σz)) into the decoder. The decoder architec-

ture therefore follows the same structure as the encoder;

two decoders for the mean and variance of the recon-

structed abundances are trained separately (again using

log-variance). The first decoder Dϕ1 : z → x′ maps

the latent vector z to the reconstructed measurement

x′, while the second decoder Dϕ2 : (z, σz) → σ′
x maps

the latent vector and error σz to the reconstructed error

σ′
x. The reconstruction penalty for each abundance in
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an observation is then computed as the KL divergence

between the original distribution X = N (x, σx) and the

reconstructed distribution Y = N (x′, σ′
x), which for two

multivariate Gaussians is computed as:

DKL (X||Y ) =
1

2

(
ln

(
σ2
x

σ′2
x

)
+

σ′2
x + (x′ − x)

2

σ2
x

− 1

)
The structure penalty for each abundance in an obser-

vation is computed as described in Eq. 2; it is the KL

divergence between the standard normal distribution

Q = N (0, 1) and the latent distribution P = N (z, σz).

The total loss function L to optimize over is therefore

the sum of the reconstruction and structure penalties,

summed over all N observations and averaged over all

M chemical abundances:

L =
1

M

M∑
j=1

N∑
i=1

(DKL (Xij ||Yij) +DKL (Pij ||Qij))

Unlike UMAP/t-SNE, our method therefore directly

reproduces the original Gaussian error in the latent

space by construction; both the encoder (dimensionality

reduction) and decoder (reconstruction) work directly

with distributions rather than points. The latent space

and reconstructed distributions are also assumed to be

Gaussian by the model, as both the structure and recon-

struction penalties are computed as the KL divergence

between two Gaussian distributions. The Gaussian er-

ror in the original data is therefore propagated through

every step of the process.

5.2. Naive Model

We begin by first training the ”naive” VAE using

the original architecture described in section 5, with-

out making the modifications we describe in section 5.1.
This is to confirm that the VAE architecture can be

used for dimensionality reduction in chemical tagging

analysis, and to provide a comparison for our modified

variant.

Our naive model uses the full set of filtered stars

from the APOGEE DR17 database, divided into train-

ing and test sets as described in section 2 The neural

network was implemented using the TensorFlow (Abadi

et al. 2015) package in Python, using a 2-dimensional

latent space similar to the UMAP projection. The en-

coders and decoders are each composed of 4 dense fully-

connected layers with 100 neurons, and a final output

layer that uses 2 (for the encoder) or 19 (for the decoder)

neurons, corresponding to the number of dimensions in

the output. The dense layers use a Gaussian Error Lin-

ear Unit (GeLU) activation function, and the final out-

put layers use a linear activation function. The neural

network is trained for 100 epochs using batch gradient

descent with the Adam optimizer. We set a learning rate

of α = 10−7 and a batch size of 256, to improve stability

when training.

Fig. 7 shows the original metallicities (Fe/H) com-

pared to the reconstructed values given by our naive

VAE, as well as the residuals. We see that our naive VAE

is able to reconstruct the original metallicity measure-

ments with good accuracy, although the reconstruction

compresses the metallicities into a smaller range than

the original values, particularly for very metal-poor or

metal-rich stars. This is reflected in the residual plot,

which shows some correlation with the original values for

very high or low values of metallicity but are otherwise

unbiased and normally distributed. Fig. 8 shows the

full results for the other 18 chemical abundances, and

displays the same loss of information observed with the

metallicity, in which the reconstructed abundance values

are compressed into a smaller range than the original.

Nevertheless, the naive model is quite capable at recov-

ering the original abundance measurements, with the

residuals of each abundance being quite robust. The re-

sults in Figs. 7 and 8 will serve as a baseline comparison

for our modified VAE model in section 5.3.

5.3. Modified VAE Model

We train our proposed model in section 5.1 and eval-

uate its ability to perform dimensionality reduction and

to reconstruct the original data. The modified VAE is

trained on the same dataset as the naive VAE and uses

2 encoders and decoders as described in section 5.1, each

with the same internal structure as the naive VAE. As

this model takes into account the measurement errors

in the observations, we use a 2-dimensional latent space

for both the means and variances (4 latent variables in

total), similar to the UMAP projection. We also train

the model using the same hyperparameters that we used

for the naive model.

Fig. 9 shows the original metallicities compared to

the reconstructed values and measurement errors from

our model (with the residuals displayed for both as

well). The modified VAE is able to reconstruct the orig-

inal measurements with much greater accuracy than the

naive model, with the standard deviation of residuals be-

ing more than an order of magnitude lower (∼ 0.15 for

the naive model compared to ∼ 0.011 for the modified

VAE). In addition, the information loss of the modified

VAE along the metallicity axis is much smaller than for

the naive one, as the reconstructed metallicities have

a wider range. This is also visible from the residuals,

which are more narrowly distributed around 0 than for

the naive model and appear largely uncorrelated with
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Figure 7. Left: Plot of the observed Fe/H ratios x (metallicity) on the x-axis against the reconstructed values x′ on the
y-axis, obtained using our naive VAE model. Both axes are in units of log10 metallicity. The red line y = x represents perfect
reconstruction of the original values by the model, with deviation from the line representing some amount of reconstruction
error for that measurement. The reconstructed metallicities are compressed into a smaller range than the original values, with
some information being lost. Right: Plot of residuals for the metallicities shown on the left. The residuals for extreme high
or low values of metallicity are correlated with the measurements (i.e. negative residuals for very low metallicity and positive
for high metallicity), reflecting how the model compresses the range of reconstructed metallicities. However, the residuals are
otherwise unbiased and normally distributed about 0, suggesting our model is quite robust.

the measurements, unbiased and normally distributed,

suggesting our model is quite robust. Moreover, the

naive VAE does not take into account the measure-

ment errors at all, while our modified VAE reconstructs

the measurement errors quite accurately overall, lend-

ing confidence in our model’s ability to propagate the

original Gaussian distributions to the latent space and

reconstruct them while preserving most of the informa-

tion.

The full results for the other 18 chemical abundances

and their corresponding measurement errors are shown

in Figs. 10 and 11, respectively. Fig. 10 demonstrates

that our model is able to reconstruct the abundance

measurements more accurately than the naive VAE,

with residuals generally being more narrowly distributed

around 0 for most abundances. Although the same in-

formation loss observed in the naive VAE (the recon-

structed abundances being compressed into a smaller

range) is still present, it is much less severe overall. The

residuals also appear more robust for most of the abun-

dances as well, underlying the improvements yielded by

our modified VAE compared to the naive model. Simi-

larly, the plots in Fig. 11 show our modified VAE model

also reconstructs the rest of the abundance errors accu-

rately, suggesting that the Gaussian uncertainties in the

other abundances can be propagated to a lower dimen-

sion and then reconstructed. Indeed, the overall perfor-

mance of the model on the test data is very promising

and suggests that it could be used to propagate Gaus-

sian uncertainty for dimensionality reduction.

6. DISCUSSION

The results of Fig. 10 demonstrate that our modified

VAE model produces a more accurate reconstruction for

all the abundances compared to the naive VAE shown

in Fig. 8, providing confidence in our overall approach.

Note that the plots in both figures have the same axes.

As noted in the previous sections, most of the recon-

structed chemical abundances for both the naive and

modified VAE (as well as the measurement errors for the

latter) have their range compressed, due to some infor-

mation being lost during the encoding and decoding pro-

cess. As each measurement is weighted the same amount

by the reconstruction loss, we expect the model to gen-

erally emphasize more accurate reconstruction along the

axes with the largest range, analogous to other dimen-

sionality reduction methods like principal component

analysis. Figs. 9 and 10 demonstrate this phenomenon;

the most accurate reconstructed abundance is the metal-

licity, since it has the largest range of any of the 19

parameters (from roughly −2.0 to 0.5). While some

information is always lost when projecting to a lower

dimension (regardless of the method), Figs. 10 and 11

demonstrate that our modified VAE model can still en-

code the data in a way where the VAE can reconstruct

the original abundances and measurement errors while

preserving most of the information contained in the orig-

inal data. This is crucial, since (as noted in section 5.1)

our modified VAE works directly with Gaussian distri-

butions during the entire process, and therefore explic-

itly propagates Gaussian error during the encoding and

decoding. In contrast, methods like t-SNE and UMAP
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Figure 8. Measurements of the other 18 chemical abundance ratios plotted against the reconstructed values obtained from the
naive VAE model. All axes are in units of log10 abundance. As with metallicity, the VAE similarly compresses the reconstructed
chemical abundances into a smaller range than the original values, with this loss of information being more severe for some
abundances than others. Nevertheless, the naive model is able to recover most of the information in the original abundance
measurements, and the residuals for the abundances generally appear unbiased and normally distributed.
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Figure 9. Top left: Observed metallicities are plotted against the reconstructed values, with both axes in units of log10
and with the same scale as in Fig. 7. Compared to Fig. 7, our modified VAE model produces a significantly more accurate
reconstruction with much less information loss, as this model is able to reconstruct the entire metallicity range. Top right:
The associated measurement errors of the metallicities are similarly plotted against their reconstructions. Our modified VAE
reconstructs the errors quite accurately, suggesting that it can propagate the original Gaussian distributions to the latent space
and reconstruct them while preserving most information. Bottom: The residuals of the observed metallicities (left) and their
associated measurement errors (right) are plotted as 2-D histograms, with denser areas represented using lighter shades. The
metallicity reconstruction is much more accurate than for the naive model, with residuals distributed more tightly around 0
(note the relative scale of the axes in both figures). Both sets of residuals also appear uncorrelated, unbiased and normally
distributed, suggesting our method is quite robust.

work with data points throughout and do not take into

account measurement uncertainty at any step.

Our work therefore suggests a more robust method

for propagating Gaussian measurement uncertainty in

chemical tagging analysis, unlike widely-used existing

dimensionality reduction methods like UMAP and t-

SNE.

7. CONCLUSIONS

In this paper, we analyzed chemical abundance and

radial velocity data from the APOGEE DR17 survey

to determine how measurement uncertainty in high-

dimensional data, simulated using Monte Carlo sam-

pling, affects both the global structure of UMAP and its

ability to recover a known control group of stars, the M3

globular cluster, as shown in Fig. 2. The UMAP results

for 6 Monte Carlo realizations drawn from a multivariate

Gaussian, as seen in Fig. 4, qualitatively demonstrate

that while global structure and large-scale features in

the embedding are stable under Monte Carlo sampling,

recovery of the M3 control group is adversely affected.

Computing the UMAP projections of 100 Monte Carlo

samples in Fig. 5, we estimate that ∼ 64% of M3 points

are recovered by UMAP under Monte Carlo sampling,

compared to ∼ 97% in the original projection. More-

over, the unrecovered stars are irregularly distributed

throughout the projection, suggesting that individual

points are delocalized in UMAP space.

We then analyzed whether the Monte Carlo distri-

bution of individual points in UMAP space is in gen-

eral Gaussian, to determine whether UMAP propagates

Gaussian measurement error from the original high-

dimensional data to its lower-dimensional embedding.

We transformed the distribution of each point in the

data (generated by the 100 Monte Carlo samples) ac-

cording to Equation 1, which converts a p-dimensional

multivariate Gaussian distribution into a univariate χ2

distribution with p degrees of freedom. The transformed
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Figure 10. The other 18 chemical abundance ratios are plotted against the reconstructed values obtained with the modified
VAE model, with the same axes as used in Fig. 8. As with metallicity, our modified VAE model produces a more accurate
reconstruction of the other chemical abundances compared to the naive model, with residuals distributed more tightly around
0. While the same loss of information observed in the naive VAE (where the reconstructed abundances are compressed into a
smaller range) is still present, it is much less severe overall.
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distribution for every point was then compared to a ref-

erence χ2 distribution using a one-sample Kolmogorov-

Smirnov test (corresponding to comparison of the orig-

inal distribution to a Gaussian) and the test p-values

were recorded. We then contrasted the distribution of p-

values for the Monte Carlo UMAP data with a synthetic

test set of 2-dimensional Gaussian data. Our results in

Fig. 6 provide strong evidence that points in UMAP

space are generally non-Gaussian distributed, and there-

fore UMAP does not propagate Gaussian error.

We then proposed a new dimensionality reduction

method based on a modification of the variational au-

toencoder (VAE) neural network architecture. Unlike

UMAP, our modified VAE works entirely with distribu-

tions (rather than points) throughout the dimensionality

reduction process, and thus directly propagates Gaus-

sian error to a lower-dimensional latent space by con-

struction. Using the APOGEE DR17 data set, Figs. 10

and 11 show that our model can recover most of the

information in the original Gaussian distributions, and

that the reconstruction is more accurate than a naive

model that uses the default VAE architecture. Indeed,

the results strongly suggest that our method can ro-

bustly propagate Gaussian error, unlike other dimen-

sionality reduction methods like t-SNE/UMAP or the

naive VAE model. This would in turn allow for proba-

bilistic identification of cluster associations in chemical

tagging analysis, which has not been done previously.

7.1. Next Steps

In the future, we plan to apply this method to chem-

ical tagging studies of other astronomical data sets, to

probabilistically determine cluster associations of stars

in a way that existing methods like UMAP do not allow.

We could also consider further modifying the VAE archi-

tecture used in our model. One possible change could

be to completely decouple the encoder/decoder tracks

for measurements and errors, so they would be indepen-

dently encoded and decoded from the latent space. This

would allow direct interpretation of the latent space er-

rors in the same way as the latent vectors. We could

also consider adjusting hyperparameters like the inter-

nal structure of the encoders/decoders or the batch size

for gradient descent to improve model performance, as

both were chosen arbitrarily. Finally, as our model cur-

rently takes in chemical abundances as input, we hope

to generalize it so it can be applied directly to stellar

spectra without requiring the preprocessing step of con-

verting the spectra to chemical abundances first.

Software: UMAP (McInnes et al. 2018), scikit-learn

(Pedregosa et al. 2011), TensorFlow (Abadi et al. 2015)
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Figure 11. Measurement errors for the other 18 abundances are plotted against the reconstructed errors obtained with our
modified VAE. While our model is able to reconstruct the abundance errors well overall, some of the residual plots appear
biased, with the reconstructed errors being lower than the original values. This bias is particularly visible in the K/Fe and
Tiii/Fe plots. Nevertheless, the model is capable of reconstructing the original Gaussian distributions for most of the abundances
(unlike UMAP), and the residuals for most of the abundances are still robust.
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