

Properties of Decameter Earth Impactors

Scientific/

lan Chow¹, Peter Brown¹

¹Department of Physics and Astronomy, University of Western Ontario

Why are decameter (~10m-size) impactors interesting?

Main impact hazard – 1600 people injured in 2013 Chelyabinsk explosion

Fireballs Reported by US Government Sensors (1988-Apr-15 to 2024-May-27; limited to events >= 10kt)

Previously classified US Government (USG) sensor data released in 2022

Western

commercial (in-situ resource utilization) 2019 MO interest

Size range where there are both telescopic surveys of near-Earth objects (NEOs) and fireball observations of Earth impactors

Telescopic surveys: ~20-40 years estimated using albedo of 0.18, USG satellites: ~2-3 years Much higher impact rate than 10^{-3} expected from telescopic surveys! lesvorny et al. (2023) Tidal disruption of a larger body? Harris & Chodas (2021) Heinze et al. (2021) (e.g. Nesvorný et al. 2023) Bolide Enerav (kT TNT)

Estimating orbital uncertainties

Are the orbits of decameter impactors similar to telescopically observed NEOs?

Big Questions

Where do decameter-sized asteroids originate from in the asteroid belt?

Could recent (<10⁴ yrs) tidal disruption explain the impact rate discrepancy?

Orbital Similarity

and telescopic objects are not drawn from the same population!

Suggests a bias in telescopic detections

Impact Discrepancy

Quantify similarity of two orbits using *D* criterion to determine recent physical association (i.e. tidal disruption) – lower *D* value means the orbits are more similar

D(i, i) and D(i, t) above rejection limit for all impactors i and telescopic objects t

than carbonaceous C/D type

mpactor-Impactor

2.5

2.0

the cause of the impact rate discrepancy

secular resonance with small contributions from 3:1 J MMR and Hungarias